

Development Standards & Practices Used
IEEE-29119: We will write Unit Tests for our web application to ensure functionality in each
separate piece.

IEEE-12207: We will follow the standard software lifecycle process.

IEEE-7.8: Code of ethics: We will follow ethical development practices.

Summary of Requirements

The application should…

1. be a desktop or web application (constraint)
2. utilize Elasticsearch to store the metadata (constraint)
3. be able to extract and index metadata from several different file types
4. able to support jpg, png, pptx, pdf, docx, xlsx, xls, and txt files
5. match search keywords with text fragments from the files
6. provide the ability for users to upload supported file types

Applicable Courses from Iowa State University Curriculum
● ComS 227, 228, & 327 - Basic programming skills
● ComS 309 - Project development skills
● ComS 319 - User Interface design
● SE 329 - Project management skills
● ComS 363 - Database management skills
● ComS 409 - Requirements discovery

New Skills/Knowledge acquired that was not taught in courses
● React framework
● Working with a client
● Elasticsearch setup

1

Table of Contents
1. Team 8

1.1 Team Members 8

1.2 Required Skills For The Project 8

1.3 Skill Sets Covered By The Team 8

1.4 Project Management Styles Adopted By The Team 8

1.5 Initial Project Management Roles 8

2. Introduction 8

2.1 Problem Statement 8

2.2 Requirements & Constraints 9

2.2.1 Requirements 9

2.2.2 Constraints 9

2.3 Engineering Standards 10

2.4 Intended Users and Uses 10

2.4.1 Use Case One 10

2.4.2 Use Case Two 10

Figure 1: Use Case Diagram 11

Figure 2: User Persona Diagram of Buildertrends customer base 11

3. Project Plan 12

3.1 Project Management/Tracking Procedures 12

3.2 Task Decomposition 12

Table 1: Task Decomposition 13

3.3 Project Proposed Milestones, Metrics, and Evaluation Criteria 13

3.3.1 Milestones 13

Figure 3: Gantt chart for milestones 13

Table 2: Milestone Decomposition 14

2

3.4 Project Timeline/Schedule 14

Figure 4: Gantt chart for schedule 15

3.6 Personnel Effort Requirements 16

Table 3: Personal Efforts Requirements 16

3.7 Other Resource Requirements 17

4 Design 17

4.1 Design Context 17

4.1.1 Broader Context 17

4.1.2 User Needs 18

Builders & Contractors 18

Homeowners 18

Buildertrend Staff 19

4.1.3 Prior Work/Solutions 19

4.1.4 Technical Complexity 19

4.3 Proposed Design 19

4.3.1 Design Visual and Description 20

Figure 5: TEDE Context Diagram 20

Figure 6: TEDE Component Diagram 21

4.3.2 Functionality 21

4.3.3 Areas of Concern and Development 22

Uploading docs 22

UI/UX 22

Accuracy of results 22

Query speed 22

Scalability of doc types 22

4.5 Design Analysis 23

3

4.6 Design Plan 23

5 Testing 23

5.1 Unit Testing 23

5.2 Interface Testing 24

5.3 Integration Testing 24

5.4 System Testing 25

5.5 Regression Testing 25

5.6 Acceptance Testing 25

5.7 Security Testing 25

5.8 Results 25

Figure 7: Amended Component Diagram with the testing strategy 27

6 Implementation 27

Our implementation followed closely to our initial design plan. It consisted
of 5 main components: Web Application, Elastic Query Handler, File
Upload Handler, Text Extractor and an Elasticsearch instance. For this
project, implementation is inseparable from the design activities. See the
design section for more details. We now describe the final implementation.
Appendix 1 contains details regarding setup options and selection. 27

6.1 Web Application 27

Figure 8: Starting page of the web application 28

Figure 9: Expanded filter bar with file type, author and path filters selected
29

Figure 10: Results View showing 4 Result Cards of different file types 30

Figure 11: Connection error occurred during the query 30

Figure 12: File Upload window makes use of the os native file selector to
choose files 31

Figure 13: Shows the File Uploader’s possible response messages. 31

6.2 Elastic Query Handler 31

4

Figure 14: POST format from and to the web application to the Elastic
Query Handler 32

Figure 15: POST format from and to the Elastic Query Handler to
Elasticsearch Instance 32

6.3 File Upload Handler 33

6.4 Text Extractor 33

6.5 Elasticsearch Instance 33

8 Closing Material 33

8.1 Discussion 33

8.2 Conclusion 34

Appendix I: Operation Manual 34

Frontend Setup 34

“elastic-handler” Setup 34

“tede” Setup 34

Frontend Tests 35

“elastic-handler” Tests 35

Figure 16: Example output the user may see when running the
elastic-handler tests 35

“tede” Tests: 35

Backend Setup 36

“Elasticsearch” Setup 36

“Spring/Tika Server” Setup 36

Backend Tests 36

“Elasticsearch” Tests 36

“Spring/Tika Server” Tests: 36

Appendix II: Alternative/Initial Designs & Evolution 37

Frontend 37

5

Initial Mockups 37

Figure 18.1: Mock-Up of the Results View of the User Interface. 37

Figure 18.2: Mock-Up of the Upload File View of the User Interface. 38

Figure 18.3: Mock-Up of the Filters View of the User Interface. 38

Backend 38

Component Diagram from 491 Design Document 38

Figure 19: TEDE Component Diagram 40

Appendix III: Code 40

6

List of figures/tables/symbols/definitions

Figure 1: Use Case Diagram 11

Figure 2: User Case Persona Diagram of Buildertrend customers 11

Table 1: Task Decomposition 13

Figure 3: Milestone Gantt Chart 13

Table 2: Milestone Decomposition 14

Figure 4: Schedule Gantt Chart 15

Table 3: Personal Efforts Requirements 16

Table 4: Responsibility Considerations 18

Figure 5: TEDE Context Diagram 20

Figure 6: TEDE Component Diagram 21

Figure 7: Amended Component Diagram with the testing strategy 27

Figure 8: Starting page of the web application 28

Figure 9: Expanded filter bar with file type, author and path filters selected 29

Figure 10: Results View showing 4 Result Cards of different file types 30

Figure 11: Connection error occurred during the query 30

Figure 12: File Upload window makes use of the os native file selector to choose files 31

Figure 13: Shows the File Uploader’s possible response messages 31

Figure 14: POST format from and to the web application to the Elastic Query Handler 32

Figure 15: POST format from and to the Elastic Query Handler to Elasticsearch Instance 32

Figure 16: Example output the user may see when running the elastic-handler tests 35

Figure 17: Options shown when tede tests are ran 36

Figure 18.1: Mock-Up of the Results View of the User Interface. 37

Figure 18.2: Mock-Up of the Upload File View of the User Interface 37

Figure 18.3: Mock-Up of the Filters View of the User Interface 38

Figure 19: Original TEDE Component Diagram 39

7

1. Team
This section describes the basic overview of our team and skills required for the project.

1.1 Team Members

● Bruce Bitwayiki
● Jared Hayashi
● Rushal Sohal
● Tiffany Mayberry

1.2 Required Skills For The Project

● Backend and database knowledge
● Frontend development for UI
● Communication and documentation
● Familiarity with Agile & waterfall methodology

1.3 Skill Sets Covered By The Team

● Backend and database knowledge - Jared & Bruce
● Frontend development for UI - Tiffany & Rushal
● Communication and documentation - All
● Familiarity with Agile and waterfall methodology - Tiffany, Jared & Bruce

1.4 Project Management Styles Adopted By The Team

Agile + waterfall methodologies and bi-weekly sprints. More details are in the Project Plan.

1.5 Initial Project Management Roles

● Bruce Bitwayiki - Backend documenter, Backend Architecture Design
● Jared Hayashi - Client communication, Backend Architecture Design
● Rushal Sohal - Documentation and reports, Frontend and UI
● Tiffany Mayberry - Faculty Advisor communication, Frontend and UI

2. Introduction
We now describe the problem and discuss the requirements and constraints.

2.1 Problem Statement

Construction managers and workers using Buildertrend’s software are unable to quickly
find information inside documents they have uploaded quickly. Information may be spread
across multiple files over a period of time, making it difficult and time-consuming to
manually search through the documents. The time spent looking for the file could be

8

better spent doing other, more important, tasks. A new way to search and store the file’s
content needs to be added to Buildertrend’s application. This will enable the construction
managers and workers to spend the time they would have spent looking for the file on
more productive tasks.

2.2 Requirements & Constraints

We now enumerated the requirements, constraints, and stretch requirements. Stretch
requirements are outside of the basic functionality of the project, but if time allows, some
may be included in the final deliverables.

2.2.1 Requirements

1. Functional Requirements:
1.1. The application shall extract and index metadata from several different file

types
1.2. The application shall support jpg, png, pptx, pdf, docx, xlsx, xls, and txt files
1.3. The application shall match search keywords with text fragments from the

files
1.4. The application shall allow users to upload supported file types
1.5. The application shall provide search filters such as file type, file name,

author, and date
2. User Interface and Aesthetics:

2.1. The application shall have a simple UI that allows users to search files that
are indexed

2.2. The application shall display the results of a search query (ordered by best
fit)

2.3. The application shall indicate if no search results were found
2.4. The application shall display the filename and path of the files that match

the search criteria
2.5. While the application is searching for results, the application shall indicate

the results are loading
3. Resource Requirements:

3.1. The application shall be easily deployable to a server(s) (potentially
provided through Iowa State in the initial stages of development)

4. Environmental Requirements:
4.1. All users will have the same view and permissions
4.2. No authentication and authorization will be needed for this project

2.2.2 Constraints

1. The query keyword shall be up to 140 characters long
2. The application shall be a desktop or web application
3. The application shall be readable in windows larger than 500 by 600 size

9

4. The application shall utilize Elasticsearch to store the metadata
5. The application shall return a result within 10 seconds
6. If the application does not return a result within 10 seconds, the application shall

limit the number of results returned or indicate an exception

2.3 ENGINEERING STANDARDS

● IEEE-29119: We will write Unit Tests for our application to ensure functionality in
each separate piece. This would help us ensure that the individual components
function correctly.

● IEEE-12207: We will follow the standard software lifecycle process. This shall help
us in the development of our application.

● IEEE-7.8: Code of ethics: We will follow ethical development practices as it defines
the core values of our team.

2.4 INTENDED USERS AND USES

The primary users are Buildertrend’s customers and support staff. Below are some use
cases:

2.4.1 Use Case One

Users will interact with the system via a web application. The web application will display
a search bar and filters that the user can use to query for files. The results would be
ordered by best fit, and the user can select the desired file (based on filename and path).

2.4.2 Use Case Two

Support staff shall have additional access to reports and queries made by regular users.

10

Figure 1: Use Case Diagram

Figure 2: User Persona Diagram of Buildertrends customer base

11

3. Project Plan
We now discuss our project management plan and describe the breakdown of project
tasks, milestones, and schedule.

3.1 PROJECT MANAGEMENT/TRACKING PROCEDURES

We plan on using a combination of Waterfall & Agile management styles. The linear
approach of the Waterfall process will allow us to take account of the initial requirements
and help us in developing the application life cycle. The flexibility of the Agile Application
Development process will allow our team to easily adapt to changes regarding features
(documents support), timing constraints, new technologies, or, in an (unlikely but)
extreme case, the overall scope of the project.

Our group plans on using a combination of GitLab and a shared Google Drive for this
project. GitLab will be used to keep track of tasks and a repository for code. Our primary
means of communication between team members will be through Discord. Microsoft
Teams will be used for primary communication with BuilderTrend. Email will be used for
communication with our faculty advisor.

3.2 TASK DECOMPOSITION

The breakdown of the project's tasks is described in the following table.

Task Task Description

1. Project Planning Flush out requirements received from the
client and figure out our team dynamic.

2. Develop Web Application User Interface
(UI)

Create a UI for users to search using
keywords and filters and see the results of
related files. UI will also need to allow the
uploading of files.

3. Develop REST API Design and implement application
functions that communicate between the
frontend and Elasticsearch and between the
text extractor and Elasticsearch.

4. Setup Elasticsearch Node Setup Elasticsearch node to store uploaded
data.

5. Develop File Text Extractor Design and implement a way to extract text
and metadata from various files.

12

6. Application Testing Test individual components of the web
application, text extractor, and REST API.
See Section 5 for more details.

Table 1: Task Decomposition

3.3 PROJECT PROPOSED MILESTONES, METRICS, AND EVALUATION CRITERIA

We now discuss our project milestones and how we plan on measuring the success of the
project.

3.3.1 Milestones

The project milestones for each task can be seen in a Gantt chart shown in Figure 3. The
corresponding descriptions of the activities are provided in Table 2.

Figure 3: Gantt chart for milestones

Task Milestone Description

1. Project Planning The main milestones for this phase are completing this document
and presenting our project. This will allow us to have a solid base
when beginning implementation phases after the summer break.

2. Develop Web
Application User
Interface (UI)

The first milestone for this phase is to complete a UI prototype
and present it for approval from our client, Buildertrend. This
enables us to verify the requirements and what they are expecting
from the final deliverable.
The other milestones of this phase are implementation end goals
for the core components of the UI: Search Bar, Filter Bar, and File

13

Uploader. The milestones are concurrent due to how closely
related the functionality of the components are.

3. Develop REST API The milestone of this phase is the complete functionality of the
interfaces between the core components: Web Application to
Elasticsearch, Web Application to Text Extractor, and Text
Extractor to Elasticsearch. More information can be found in
Section 5.2 (Interface Testing).

4. Setup
Elasticsearch Node

Elasicsearch is a core system of our application. The main
milestone for this phase is a successful installation of an
Elasticsearch node on our development server.

5. Develop File Text
Extractor

The main milestone for this phase is the ability of our application
to extract text and metadata from the required files (see
requirement 1.2) with at least 90% accuracy.

6. Application
Testing

The main milestone of this phase is to receive approval from the
client. More information about our testing plan can be found in
Section 5.

Table 2: Milestone Decomposition

3.4 PROJECT TIMELINE/SCHEDULE

Our project schedule is broken down as illustrated in the Gantt chart shown in Figure 4.

14

Figure 4: Gantt chart for schedule

15

3.6 PERSONNEL EFFORT REQUIREMENTS

A time estimate to complete each task is included in Table 3 and a brief description of our
reasoning.

Task Name Est. Hours Explanation

1. Project Planning 75 Including most of the assignments for the
first semester, research for learning how to
utilize the APIs, and asking our client
questions. The estimated time should be
between 75 and 100 hours.

2. Develop Web Application
User Interface (UI)

50 Our frontend requirements are not that
rigorous, so it should take less time relative
to our backend applications

3. Develop REST API 100 The REST API will interface with all our
applications and can result in many issues
transmitting messages between our
applications, so the most time will be spent
here

4. Setup Elasticsearch Node 75 Elasticsearch is one of the core parts of the
backend, so a large amount of time will be
allocated to developing and refining it for
maximum performance

5. Develop File Text
Extractor

75 Apache Tika is the other core part of the
backend. We need to ensure we get the
correct info from the files as efficiently as
possible.

6. Application Testing 25 We will need to spend some time testing
some edge cases and the entire system's
performance. Although there should not be
too many test cases depending on how many
subsystems, we implement from the stretch
goals

Table 3: Personal Efforts Requirements

16

3.7 OTHER RESOURCE REQUIREMENTS

There should not be any need for additional resources for our project apart from the
server. Since it is a software project, we won’t need any parts or materials.

4 Design
We now describe the context of our project at different scales. We also describe our design
process/reasoning and present our proposed design.

4.1 DESIGN CONTEXT

In this section, we elaborate on the context of our project at a broad scale and a user scale.
We also discuss the current solution of Buildertrend’s search feature and the technical
complexity of our project.

4.1.1 Broader Context

Buildertrend provides construction project management software and solutions for
construction companies, homeowners, and builders. Our search feature will enable them
to save time and increase productivity by reducing the time spent searching through
various documents.

Area Description Project Relevance

Public health,
safety, and
welfare

How does your project affect the
general well-being of various
stakeholder groups? These groups
may be direct users or maybe
indirectly affected (e.g., a solution is
implemented in their communities)

Our project tries to make
information inside uploaded
files more accessible to the
different users. It also allows
users to find all the files relevant
to their search and
cross-reference them. The goal
is to save the user’s time.

Global, cultural,
and social

How well does your project reflect
the values, practices, and aims of
the cultural groups it affects?
Groups may include but are not
limited to specific communities,
nations, professions, workplaces,
and ethnic cultures.

The main contextual groups are
professionals in the
construction industry. This
project will enable them to have
much greater search capabilities
in terms of not only technical
specifications but also
contextual bindings, user
requests, etc. Our project does
not conflict with any ethnic or
racial group and is transparent

17

to different groups. However,
the product is for now limited to
the construction industry.

Environmental Direct and indirect environmental
impacts such as deforestation or
unsustainable practices related to
materials manufacture or
procurement.

By having the capability and
access to different search filters,
construction workers can gain
environmental awareness (e.g.,
municipality constraints on
forestry practices near
construction sites). Should
future software versions scale
beyond a threshold, resources
such as energy consumption
may be a concern.

Economic Possible financial viability of your
product within the team, company,
cost to consumers, or broader
economic effects on communities,
markets, nations, and other groups.

The reduced search time will
allow Buildertrend customers to
save on labor/billed time costs
and work on more projects.
Giving them an edge over the
competition and attracting more
customers for Buildertrend
increasing sales and profits. In
addition, other constraints with
financial impacts may be
searchable.

Table 4: Responsibility Considerations

4.1.2 User Needs

Our application has three different user groups; their needs are defined below.

Builders & Contractors

Builders and workers need a quick and efficient method to search for information on site,
such as measurements, designs, orders, etc., to complete the project according to
requirements.

Homeowners

Homeowners need a way to search for documents regarding the construction of their
home at any time. The documents could include important information such as previous

18

contracts, costs, or design parts/specifications as necessary in order to make a decision
regarding the project.

Buildertrend Staff

Buildertrend staff need a way to support the users on any potential issues they face with
the search feature. They will have access to the full entries saved in Elasticsearch to
understand why certain results were returned for a query.

4.1.3 Prior Work/Solutions

Buildertrend has a current implementation of Elasticsearch that searches files only by file
name. There is also an implementation that allows staff members to search for files based
on their SQL representation.

4.1.4 Technical Complexity

The design consists of several subsystems of various complexity, each requiring
background knowledge and/or additional research. These subsystems include:

● Searching algorithm: Implement a search algorithm to find a return the best-fit
result within 10-seconds.

○ Requirements: Algorithm analysis and implementation, CI/CD
○ How can we maximize query result precision and recall?

● Simple frontend UI/UX: User-friendly web app with the ability to navigate,
search, and upload files

○ Requirements: Web development, React, CI/CD
● Backend architecture: Use decided tech stack to implement a system to extract,

and index provided documents to be served to the frontend UI when queried.
○ Requirements: Database management, Tika, Elasticsearch, Investigate the

impact of "mediator" that translates the text from different file types
● Test cases: Design proper testing suite to check for project requirements as well as

optimal functionality
○ Requirements: Experience with previous testing libraries(e.g., JUnit)

● Project management: We must combine all components of the project which
requires the frontend, backend, and other components to be properly implemented
and tested to enable them to communicate seamlessly and efficiently.

4.3 PROPOSED DESIGN

We now discuss the project design using several diagrams and describe how it meets the
requirements.

19

4.3.1 Design Visual and Description

The following diagram, Figure 5, shows a high-level overview of the interactions of our
application with relevant external systems. The following are brief explanations of the
numbered interactions:

1. Receives a list of files relevant to the query made and displays them to the user
2. Triggers a query using a keyword filter
3. Add other filters to a query
4. Upload a file to have the text content extracted
5. Store a copy of the upload file on server
6. Returns a list of files from Elasticsearch that match the query filters
7. Query the data stored in Elasticsearch that matches the given filters
8. Stores the metadata and content of the uploaded file into Elasticsearch

Figure 5: TEDE Context Diagram

The following diagram, Figure 6, shows a breakdown of the components of TEDE. The
components are responsible for the following responsibilities:

● Web Application SubSystem:
○ Search & Filter Component: Handles the applying keyword and other filters

from the user.
○ Request Handler: Recieves the applied search parameters and formats a

request to the Elastic Query Handler.

20

○ Result View Component: Formats and displays the results received from a
query request to the Elastic Query Handler. Each Result is formatted into a
Result Card, showing the file name, file path, and matched filters.

○ Upload Component: Initializes an upload of a file to store the file on the
server.

● Elastic Query Handler: Formats an elasticsearch query from the Web
Applications search query and retrieves data from the Elasticsearch cluster. Sends
retrieved data back to the Web Application.

● File Upload Handler: Stores the received file on the server and triggers a text
extraction/ index of the file's contents.

● Text Extractor: Uses Apache Tika to extract metadata and text content from the
given file and indexes and stores the data in Elasticsearch cluster

● Elasticsearch Cluster: Local instance of the search engine running in a docker
container on the ETG Server.

Figure 6: TEDE Component Diagram

4.3.2 Functionality

Users of our application will be able to search using keywords and search filters to find
relevant documents. It will also be able to extract text from uploaded files and store the
important information from the file. The application would support various file types like
txt, docx, pdf, pptx, etc.

21

Our current design addresses these function needs for the specified file type but may need
to be adjusted based on what is attainable. For the UI/UX requirements, we might need
further client approval.

4.3.3 Areas of Concern and Development

We have the following concerns about our current design and our plan of handling them.

Uploading docs

Concern: No clear specification of what this feature entails.

Plan: The plan is to be able to upload document types that we can search. As we scale our
search document types, we also diversify our upload document types.

UI/UX

Concern: No detailed specifications for this one either. We will have to reiterate our
design until we get approval.

Plan: Propose a UI design, receive feedback, and reiterate until final approval.

Accuracy of results

Concern: No qualitative measures were specified by the client.

Plan: For now, we will just follow the traditional measure - if the result fits the user’s need
or what the user was actually looking for.

Query speed

Concern: The client has not specified anything yet. Nonetheless, we want to return our
results within 10s. Anything longer than this, we will have to rework and optimize our
algorithm.

Plan: Develop a search algorithm and optimize it until an acceptable speed is attained.

Scalability of doc types

Concern: The list of document types is quite open-ended. Less of concern and more of a
development.

Plan: We would be starting with txt and docx files. As we find success, we will progress to
other types like pdf, ppt, jpeg, etc.

Overall, most of our concerns can be resolved with better client specifications.

22

4.5 DESIGN ANALYSIS

Prior to initial implementation, we were given the opportunity to explore and experiment
with various tools and technologies to complete the project.These experiments allowed us
familiarize ourselves with the tools, and have a system designed to best fit the needs of
Buildertrend. Following the selection of the tech stack, we had several iterations of system
design (diagrams, sketches, etc) and received feedback from the client. Based on the
previous experiments conducted on various components of the system and the positive
feedback received from the client, we felt confident and moved forward with the
implementation of the design.

4.6 DESIGN PLAN

Our design process will follow our current schedule o utlined in Section 3.4. We will be
developing most of the components concurrently and getting them approved during our
weekly meetings with the client. We allocated some of the time in the implementation
sections to making changes and refining the components as we develop them based on the
feedback we receive. We will adjust and update our schedule accordingly based on the
progress that we make throughout the semester as well. We plan to finish the overall
implementation before fall break. This will give us a couple of weeks to make adjustments.

5 Testing
Some of the unique testing challenges in our project include the complexity of testing
communications between the frontend and backend. As well as testing the accuracy of our
text extractor module. Below is our testing plan to handle these challenges.

5.1 UNIT TESTING

As shown in our design diagrams in section 3, there are several distinct modules in our
system. Each of these modules has identifiable units of work that are planned to be a part
of the final deliverable.

Below is a list of the identifiable elements:

1. Web Application
a. All components and functionality displayed to the user such as:

i. Search bar queries and filters
ii. Proper presentation of results

iii. Uploading of new documents
2. Text Extractor

a. Extraction of metadata from newly uploaded files. It should be able to
handle all of the file types specified in Requirement 1.2.

23

b. Be able to identify file types and determine what pieces of metadata to send
to Elasticsearch. (e.g., text body for pdf, resolution for jpg, etc.)

3. Elasticsearch Query Handler and Text Extractor
a. Proper indexing of the metadata from Tika Text Extractor
b. Building queries to search the Elasticsearch cluster based on inputs

received from the web application

Below is a list of tools that will help us test the above elements:

1. Web Application
a. We plan on using Jest and React Test Library packages for unit testing.

Since they are React’s recommended testing tools, they will integrate well
into the project. Jest will allow us to see the code coverage of our tests and
will allow us to mock data inputs. React Testing Library provides virtual
DOMs for testing React components without a browser.

2. Text Extractor
a. We plan on using JUnit for unit testing. Since the primary package we are

using to support this component is a Java package, JUnit gives us the ability
to easily test our code. JUnit is also well documented and will integrate into
our development environment easily.

3. Elasticsearch Query Handler and Text Extractor
a. Since the primary purpose of this component is to handle communication

between components. See 5.2 Interface Testing for more information.

5.2 INTERFACE TESTING

There are several identifiable levels of interface testing:

1. Web Application to Elastic Query Handler
a. Is responsible for fetching and retrieving query data

2. Web Application to Text Extractor
a. Is responsible for sending a selected file to be extracted by the Tika Text

Extractor component
3. Text Extractor to File Upload Handler

a. Is responsible for inserting a file's metadata and text content into
Elasticsearch

Elasticsearch provides a REST API for inserting data. We plan on using Postman to validate
data insertions into Elasticsearch are successful. To test our components' interaction with
Elasticsearch, interfaces 1 and 3, we plan on using Jest and JUnit, respectively.

24

5.3 INTEGRATION TESTING

Integration testing will be critical for our project as we will have several components
communicating with each other through various endpoints. Incremental integration
testing will be the approach for this project, allowing us to test individual modules prior to
integrations. It will be important to test and validate the functionality between the
Elasticsearch endpoint and the tika application as well as the integration between the
frontend and Elasticsearch; this will be the core of the application. Additionally, if the
group reaches the stretch goal, integration of the application into a cloud-based
environment would require additional integration testing as there would be additional
components to take into consideration during development (VPC, Cloud DB, etc.).
However, our project will primarily be focused on the local implementation prior to
integrating with the cloud. As this project serves as a proof-of-concept, we anticipate that
Buildertrend will also be integrating this product into their own application, implying
additional testing during this stage.

5.4 SYSTEM TESTING

Considering that our overall system is composed of three major components with minimal
communication among them, our system testing should be fulfilled by our unit and
integration tests. The individual components should be tested via the unit tests to ensure
that they are functional before testing the communication among them. Following the
unit tests, there are three interprocess communications that are specified in the interface
testing section that need to be tested. These communications will be tested using the
methods specified in the integration testing section which will complete our system
testing.

5.5 REGRESSION TESTING

It is important that new additions made to the system should not break it and instead
enhance the user experience. Our most essential features are web application,
Elasticsearch handler, and tika text extractor, and we need to make sure they are robust
enough. We would do enough unit and integration testing on our critical components and
then add a new feature and see if we still get the same results. This way, we can have our
core system to be robust and can easily figure out what new feature is breaking the old
functionality.

5.6 ACCEPTANCE TESTING

Requirements agreed upon by the client and the team should be fully visible and usable in
our minimal viable product - the search web application. We plan on having several
iterations of acceptance testing as we expect to receive feedback from the client while
making progress toward the final deliverable. The final iteration will include

25

documentation in order to aid users and developers, as well as the working application
based on the feedback received, showcasing the requirements and features.

5.7 SECURITY TESTING

Security testing is now more important than ever, however, it will not be applicable to our
project as it’s just a proof of concept. We expect Buildertrend to work on the security when
they integrate it into their system.

5.8 RESULTS

We followed a test driven development approach when implementing our project. The
large majority of our tests were unit tests covering the frontend as well as the Apache Tika
extraction.

For the frontend, the UI tests primary focused on how the subcomponents passed data to
each other. These tests allowed us to verify changes did not break other components
directly or indirectly. Each subcomponent in the web application was tested with a range
of possible inputs. The tests covering the interaction between the web application’s
Request Handler & Elastic Query Handler were useful in capturing the requests we initially
would run in Postman, and helped us keep track of the expected query formats.

For the backend, the tests primarily focused on ensuring Apache Tika could parse all of the
required file types. It also helped streamline the development process since new test cases
could be implemented easily to test new features. We used parameterized tests to cover
over 25 files of varying types. This helped us ensure that the end product is able to handle
many different files of different sizes, contents, etc.

Finally, we primarily used Postman to handle the communication aspects of our project.
This helped us test the frontend sending files to Tika and the frontend displaying various
files that may be sent by Elasticsearch.

26

Figure 7: Amended Component Diagram with the testing strategy

6 Implementation
Our implementation followed closely to our initial design plan. It consisted of 5 main
components: Web Application, Elastic Query Handler, File Upload Handler, Text Extractor
and an Elasticsearch instance. For this project, implementation is inseparable from the
design activities. See the design section for more details. We now describe the final
implementation. Appendix 1 contains details regarding setup options and selection.

6.1 WEB APPLICATION

The web application consists of 3 main sub-components: Search Bar, Filter Bar, and File
Upload Window. The following figures capture the functionality of these components.
Figure 8 captures starting page, which include the Search Bar component as well as access
buttons to the Filter Bar and Upload Window.

27

Figure 9 shows an expanded view of the Filter Bar. It contains an area showing what filters
are affecting the query, as well as buttons to add / removed file types to the query. It also
includes several text based filters as seen below that can be added and removed from the
query.

Figure 10 shows the Result View containing Result Cards for each of the results for the
query. Each result card shows the file name, an icon for the file type, file path, and filters
that were a match.

If a error occurred during the query, the user will see a screen captured in Figure 11.

Figure 12 shows the use of the File Uploader window. It allows the user to choose multiple
files to upload to the server to be processed into Elasticsearch. The uploader will notify to
the user if it was successful or if a problem occurred, as seen in Figure 13.

Figure 8: Starting page of the web application

28

Figure 9: Expanded filter bar with file type, author and path filters selected

29

Figure 10: Results View showing 4 Result Cards of different file types

Figure 11: Connection error occurred during the query

30

Figure 12: File Upload window makes use of the os native file selector to choose files

Figure 13: Shows the File Uploader’s possible response messages.

6.2 ELASTIC QUERY HANDLER

This component’s responsible of formatting the POST request received from the Web
Application into an Elasticsearch query and format Elasticsearch’s response in the format
the Web Application is expecting. Figure 14 shows the format of a POST request and
response from and to the web application. Figure 15 shows the format of a POST request
and response from and to the Elastic Query Handler to the Elasticsearch Instance. The
actual component is implemented using the Express.js framework and Elasticsearch’s
Javascript API.

31

Figure 14: POST format from and to the web application to the Elastic Query Handler

Figure 15: POST format from and to the Elastic Query Handler to Elasticsearch Instance

32

6.3 FILE UPLOAD HANDLER

This component handles the files that are uploaded to the server by the user–a simple
spring server is used for this purpose. The user can select one or multiple files and upload
together. Once submitted by the user, the files are extracted via the Tika extractor and the
extracted data is put into the elasticsearch instance. The files are also written to the
“/uploads” directory on the server. One major feature that we wanted to implement with
this handler was to upload the local file path and other attributes as well. However, this
wasn’t possible due to the browsers not being able to access the user’s disk due to security
concerns.

6.4 TEXT EXTRACTOR

This component extracts all of the relevant information from files uploaded to the server.
It extracts data like title, content, path, etc. from all files and extracts information specific
to certain file types such as page count on word docs. It also uses Tesseract to attempt to
read text from images and convert it to text in the JSON file it creates. It then opens a
connection to our Elasticsearch instance using the Elasticsearch API and sends the JSON
file containing the file’s metadata to it to be indexed.

6.5 ELASTICSEARCH INSTANCE

We were provided a server from ETG to be used for this project; this server was used to
host our instance of Elasticsearch. We went with a default configuration as it was to be
used primarily as a proof-of-concept; nonetheless, it can be easily customised for specific
security or availabilty needs. Once installed, we were able to access the instance via port
5601 and login using the credentials provided during setup. In order to run queries and
vsualize the data, we made use of the Kibana console in the Development Tool section of
the Elasticsearch landing page. The initial step was to create an index to hold our data.
Once the index was successfully created, we made a mapping according to the fields to be
extracted from the documents (Author, Title, etc.).

8 Closing Material
After describing our project in detail, we now highlight the main results of our project. We
also reiterate the work done during the implementation phase of our project.

8.1 DISCUSSION

We have designed our solution to meet our client's requirements. We have included
support for the request file types for extracting text. As requested, we have also included a
user interface that allows the user to query by keywords and filters.

33

8.2 CONCLUSION

We started by researching potential packages to help us extract text from files and develop
a simple user interface. Then based on that, we decided on our technology stack. After
this, we continued to learn more about how to use the technologies we used.

To reiterate, our goal is to design a prototype application that uploads the text content and
metadata of supported file types into Elasticsearch and develop a simple user interface to
query and filter uploaded content. Our application will serve as a proof of concept as part
of Buildertrend “Global Search” initiative.

Though the course of the semester our group has met biweekly with out contracts at
Buildertrend to receive feedback and approval of the functionality of our project. This
iterative approach was chosen during the planning phase of the project. It came more clear
that they were interested in the limits, if any, discovered with Elasticsearch and Apache
Tika package. So in addition to the code deliverables we will be providing Buildertrend a
report of these findings.

Appendix I: Operation Manual
Instructions on how to run our application given access to the code repository.

Frontend Setup

1. Using git clone the code repository.
2. In the cloned repository, go to the Frontend directory. This is separated into two

sections: elastic-handler & tede.
a. Both packages use npm for managing dependencies, to install see npm’s

install instruction page.

“elastic-handler” Setup

This component is required to be running in order for tede (the User Interface
component) to make requests to the elasticsearch instance on the server.

1. In the elastic-handler directory, run npm install to install the required
dependencies.

2. To start the handler, run either npm start or npm run dev. The later will
automatically restart when your code changes. These commands will run the server
on http://localhost:8626/

34

https://www.npmjs.com/package/npm
https://www.npmjs.com/package/npm

“tede” Setup

Note: this component is dependent on being connected to elastic-handler component (see
above setup instructions) and being connected to Iowa States network (or vpn) in order to
connect to Elasticsearch.

1. In the tede directory, run npm install to install the required dependencies.
2. To start the handler, run npm start. This will start the web application on

http://localhost:3000/.

Frontend Tests

“elastic-handler” Tests

In the elastic-handler directory, run npm server-tests.

Note: This command will start automatically start the Elastic Query Handler server and
run a set of tests that mimic the tests we would run manually in Postman. When the tests,
finish the server instance it started will also be shut down. Example output can be seen
below in Figure 16.

Figure 16: Example output the user may see when running the elastic-handler tests

“tede” Tests:

In the tede directory, run npm test.

Note: While running the user will be presented with options of how to choose what tests
to run, see Figure 17 below for example.

35

Figure 17: Options shown when tede tests are ran

Backend Setup

“Elasticsearch” Setup

Elasticsearch offers 3 self-managed options: Running it on any local machine, running it in
a Docker container, or running it on Kubernetes with Elastic Cloud on Kubernetes. We
opted for the Docker container option as it provides fast deployment with ease of creating
and deleting instances. We used Elasticsearch 8.2.3 and Kibana 8.2.3 docker images for our
ELK Stack with security enabled and configured by default. Once completed, the instance
can be accessed via port 5601.

“Spring/Tika Server” Setup

The Spring server containing the Apache Tika code is bundled as a JAR file. When
executed, it creates a spring server using port 8080 which listens for POST requests at the
directory “/uploads”. For example, if the server is run locally, requests should be sent to
“http://localhost:8080/uploads”. This is the entry point for the backend, so files sent to this
server will be parsed and indexed by Elasticsearch which will then later be displayed on
the frontend.

Backend Tests

“Elasticsearch” Tests

Elasticsearch functionality was tested by making calls to the REST API using Postman and
the UI to verify connectivity.

“Spring/Tika Server” Tests:

Automated unit tests for this system are included in the source code. They use files
provided by the ExampleDocs directory.

36

http://localhost:8080/uploads

Appendix II: Alternative/Initial Designs & Evolution

Frontend

Initial Mockups

As a part of the project planning phase, we implemented a simple prototype of the user
interface. Screenshots of our client-approved mockup can be found in Figure 18.1, Figure
18.2, and Figure 18.3 For this project, implementation is inseparable from the design
activities and the mockups were used solely for the purpose of showing the client our
design plan.

Figure 18.1: Mock-Up of the Results View of the User Interface.

37

Figure 18.2: Mock-Up of the Upload File View of the User Interface.

Figure 18.3: Mock-Up of the Filters View of the User Interface.

Backend

One of the major changes to our backend design that we tackled during the
implementation was how we would design our metadata extraction as an event driven
system. We initially thought that Apache Tika could be run as its own server system,
however, this turned out to not be the case which made us allocate a portion of
development time to researching and implementing another server system for Tika to
extract the metadata. We ultimately landed on creating a Spring server which would allow
the frontend to make post requests when the user uploaded a file and when the server
received them, it would call the Apache Tika code to extract the metadata, convert it to a
json file, and send it to Elasticsearch.

Component Diagram from 491 Design Document

The diagram described in the initial design document had a couple flaws.

1. It grouped components that have separate responsibilities together. For example,
The “Search & FIlter Bar” component should separate those out into another level.
The two components in the “Elasticsearch” component are another example.

38

2. It does not capture the Results View component that is responsible for showing the
responses to queries made.

3. It is confusing what work we are doing in the “Elasticsearch” and “Apache Tika”
components. The naming convention and grouping of components made it unclear
where the work we were planning on / responsible for separated from the
Elasticsearch tool and Apache Tika library.

The following diagram, Figure 19, shows a breakdown of the components of TEDE as
described in the initial design document. The components are responsible for the
following responsibilities:

● Web Application System:
○ Search & Filter Bar: Handles the applying keyword and other filters from

the user
○ Upload Cache: Initializes an upload of a file to store the file on the server

and triggers a text extraction/ index of the file's contents
● Apache Tika System:

○ Tika Text Extractor: Extracts the metadata and text content from the given
file and calls the Tika Handler to index/store the data

● Elasticsearch System:
○ Web-App Handler: Creates a query call from user input and retrieves data

from the Elasticsearch cluster
○ Tika Handler: Inserts data into the Elasticsearch cluster

39

Figure 19: Original TEDE Component Diagram

Appendix III: Code
Since an NDA was signed, the team can only share code that has been approved by
Buildertrend. No code has been approved.

40

